Last spring, Barry Warzak of Midwest Optical Systems (MIDOPT) in Illinois contacted Ned Horning about writing an article on dual bandpass filters. Ned got me involved, and Barry also became interested in having us try some of the new filters he was developing. The primary focus of MIDOPT is industrial machine vision filters and lenses, but Barry recognizes the potential in the emerging market for agricultural analysis and aerial imaging. Barry has sent us samples of 15 different filters that could be used for infrared plant health analysis. Some of these are fancy dichroic filters that transmit one or two very narrow bands of color, and others are high quality glass filters that have spectral qualities similar to Wratten 25A, Wratten 15, or Schott BG3 filters.
Ned has been using the filters in his experiments with calibrating NDVI images, and Barry recently sent us samples of calibration targets of known spectral reflectance. This type of target is placed in the scene to be photographed so the brightness of each pixel in a photo can be related to actual reflectance or radiance at different wavelengths. This is required if the NDVI values derived from photos are to have values that can be related to legacy NDVI (e.g., from satellites).
To use the filters we removed the IR block filter from inside some Canon PowerShots and placed the filters in front of the lens. Filter tubes for certain PowerShot models can be taped onto the front of any PowerShot and allow the filters to be easily swapped. Our standard protocol is to set up a solid tripod over a scene with some green plants, dead foliage, and calibration surfaces of known reflectivity. Photos of the same scene can then be taken with a series of different filters.
Ned will use these photos to refine his calibration routine. Below are some of my attempts to make NDVI from jpegs without calibration. So although the NDVI images distinguish healthy foliage from non-foliage, the particular NDVI values represented are not correct except by chance and brute force (from the white balance procedure).
Above: This bluish photo was taken with a dual bandpass dichroic filter whose spectral transmission curve is below. The blue color is due to a custom white balance procedure done to the camera to make the blue channel brighter. The blue channel captures mostly near infrared (NIR) light. Note the vignetting at the corners.
The dramatic difference in vignetting between the two filters is unexplained, as is the difference between the green and blue channels in the photo with the second filter. What observations could I make which might reveal why these differences exist? Sweet mysteries.